$$\text{True}^\text{xponential}\scriptstyle \text{: On sequences of numbers for which } \\\scriptstyle \alpha^n \le a(n) \le \beta^n \text{ for some } 1 \le \alpha \le \beta \text{ and all large } n$$
$$\text{angarg12}^{\dagger}\text{, GPLv2 license, version {{version}}}$$
Abstract. Each instant t, n is multiplied by the value of your multiplier. Buy lemmas to increase your multiplier, or click to increase n(t). Buying divides n(t) by a Lemma price. Text in red underline is clickable. Get n(t) to the value of the Theorem to prove it. Start a new experiment to prestige. Rerun previous experiments to best your own time.
1. State of the art
Axiom.    n(t) =
Axiom.     r(t) =
Axiom.     n(t+1) = n(t) × r(t)
Axiom.     n(t+1) = n(t)r(t)
Axiom.     t = {{getSprintTime()}}
Theorem {{currentPrestige}}.     n(t) $$\equiv$$
Lemma.     n(t) = n(t) + {{player.clickMultiplier.toString()}}
{{Math.max(Math.floor((player.n.div(prestigeGoal[currentPrestige]))*1000)/10,0)}}%
{{Math.max(Math.floor((player.n.ln().div(prestigeGoal[currentPrestige].ln()))*1000)/10,0)}}%
100%
2. Contributions

placeholder

3. Experimental results ({{player.sprintTimes.length}}/{{prestigeGoal.length}})

Theorem Runtime Rerun
{{$index}} {{formatTime(sprint)}} ···
3. Conclusion
4. Conclusion
Start next experiment
Retire
Save experiment  Last: {{lastSave}}
Use log scale
Acknowledgements
Thanks to NoDownvotesPlease for the initial code, tangentialThinker (Derivative Clicker) for the save system, kawaritai (Swarm Simulator) for the progress bar, r/incremental_games/ for the comments, feedback and support.